If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2+54x=22
We move all terms to the left:
9x^2+54x-(22)=0
a = 9; b = 54; c = -22;
Δ = b2-4ac
Δ = 542-4·9·(-22)
Δ = 3708
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3708}=\sqrt{36*103}=\sqrt{36}*\sqrt{103}=6\sqrt{103}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(54)-6\sqrt{103}}{2*9}=\frac{-54-6\sqrt{103}}{18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(54)+6\sqrt{103}}{2*9}=\frac{-54+6\sqrt{103}}{18} $
| 4(7x+8)=5(6x+2) | | 6(x+2)=3(3x-5) | | 3(2x+20)=2(8x+5 | | 1/4+3/(x+7)=1 | | c-11=4c-12 | | Y=5(2^x) | | ||2x+7|−5|=14 | | -3x+-2=-17 | | 1x-4.2=16 | | 4/x+1=2x+2/3 | | 4.2-x=3.4 | | x^2+20x=8000/x | | 6=2(k−6) | | 6c=–8+10c | | 3x+2÷2=x-4÷2 | | 3x+x=12x | | -4y9=15 | | 3x+2/2=x-4/3 | | R=(10+n)(250-5n) | | 28x-49=7x+35 | | 0.75(5x-3)+8=17 | | 26=10c | | 5x+4-3=101 | | 15x+60=-25 | | 7(4x-7)=7x+35 | | (15+4a)-20=2a+5 | | 8c-c+3=2c-c+2 | | 2x2−8x+6=0. | | 6n-2n-3=5n-9n-6 | | 8x-24-2x-4=20 | | 6n^{2}-2n-3=5n^{2}-9n-6 | | 8x2+15x+3=0. |